Kamis, 17 Januari 2019

➥ Limit Fungsi Aljabar Trigonometri Pengertian Rumus Contoh Soal

Pengertian Limit Fungsi

Limit merupakan sebuah konsep matematika dimana sesuatu dikatakan “hampir” atau “mendekati” nilai suatu bilangan tertentu. Limit dapat berupa sebuah fungsi yang kodomainnya “hampir” atau “mendekati” nilai suatu bilangan asli tertentu.

limit fungsi ilustrasi

Ilustrasi limit. Sumber gambar: betterexplained.com

Limit Fungsi Aljabar

Dalam pengoperasian limit fungsi aljabar, terdapat beberapa hukum atau teorema limit yang perlu diperhatikan. Jika k konstanta, fungsi f dan fungsi g adalah fungsi-fungsi memiliki nilai limit yang mendekati bilangan c, maka:

Ada tiga metode dalam mengerjakan limit fungsi aljabar, yaitu:

1. Metode substitusi

Metode paling mudah dengan menentukan hasil suatu limit fungsi adalah dengan mensubstitusi langsung nilai  kedalam fungsi f(x). Syarat metode ini adalah jika hasil substitusi tidak membentuk nilai “tak tentu”. Contoh:

\lim \limits_{x\to 3}\frac{x^2 - 4}{x + 2} = \frac{9 - 4}{3 + 2} = 1

2. Metode pemfaktoran

Jika pada metode substitusi menghasilkan suatu nilai bentuk tak tentu seperti:

∞, \frac{0}{0}, \frac{\infty}{\infty}, 0 x∞, ∞ – ∞, 00, ∞0, atau ∞∞

maka fungsi tersebut harus difaktorkan terlebih dahulu sehingga bentuknya tidak menjadi bentuk tak tentu, baru kemudian bisa disubstitusikan x\to c. Contoh:

\lim \limits_{x\to 3}\frac{x^2 - 3x}{2x - 6} = \frac{x(x - 3)}{2(x - 3)} = \frac{3}{2}

3. Metode perkalian dengan akar sekawan

Metode ini digunakan jika pada metode substitusi langsung menghasilkan nilai limit yang irasional. Fungsi dikalikan dengan akar sekawannya agar bentuk limit tersebut tidak irasional, sehingga bisa dilakukan kembali substitusi langsung nilai x\to c. Contoh:

\lim \limits_{x\to -1}\frac{x +1}{1 - \sqrt{x + 2}} x (\frac{1 + \sqrt{x +2}}{1 + \sqrt{x + 2}}) = \frac{(x + 1)(1 + \sqrt{x+ 2})}{1 - (x + 2)}

=\frac{(x + 1)(1+\sqrt{x+2})}{-x - 1} = \frac{(x+1)(1+\sqrt{x+2})}{-(x+1)} = -(1 + \sqrt{x + 2})

=-(1 + \sqrt{-(1) + 2}) = -(1 + 1) = -2

Dalam pengoprasian limit fungsi aljabar, terkadang nilai x mendekati tak berhingga (∞), sehingga jika disubstitusikan fungsi menghasilkan nilai tak tentu. Dalam pengoperasian limitnya, terdapat beberapa hukum atau teorema limit yang perlu diperhatikan. Jika n adalah bilangan bulat, k konstanta, fungsi f dan fungsi g adalah fungsi-fungsi memiliki nilai limit yang mendekati bilangan c, maka:

Ada dua metode dalam mengerjakan limit fungsi aljabar bentuk tak berhingga:

  • Membagi dengan pangkat tertinggi
  • Metode ini digunakan pada limit fungsi bentuk \lim \limits_{x\to \infty}\frac{f(x)}{g(x)}. Metode ini dapat dikerjakan dengan membagi pembilang f(x) dan penyebut g(x) dengan variabel xn berpangkat tertinggi yang ada dalam fungsi  f(x) dan g(x). Setelahnya, baru dapat disubstitusi dengan x\to \infty. Contoh:

    \lim \limits_{x\to \infty}\frac{4x-1}{x^2+2} = \frac{\frac{4x}{x^2} - \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{2}{x^2}} = \frac{\frac{4}{x} - \frac{1}{x^2}}{1+\frac{2}{x^2}} = \frac{0}{1} = 0

  • Mengalikan bentuk sekawan
  • Metode ini digunakan pada limit fungsi bentuk \lim \limits_{x\to \infty}f(x) - \lim \limits_{x\to \infty}g(x). Metode ini dapat diselesaikan dengan perkalian bentuk sekawan:

    \frac{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x\to \infty}g(x)}{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x \to \infty}g(x)}

    kemudian dilanjutkan pembagian dengan metode pertama yaitu membagi dengan pangkat tertinggi. Contoh:

    \lim \limits_{x\to \infty}(\sqrt{x^2 + 4x - 5 - \sqrt{x^2 -x -2}})

    =\lim \limits_{n\to \infty}(\sqrt{x^2 + 4x -5 - \sqrt{x^2 - x - 2}}) x \frac{(\sqrt{x^2+4x-5 + \sqrt{x^2 - x - 2}})}{(\sqrt{x^2+4x-5} + \sqrt{x^2-x-2})}

    = \lim \limits_{n\to \infty}\frac{((x^2+4x-5) - (x^2-x-2))}{(\sqrt{x^2+4x-5} + \sqrt{x^2-x-2})} = \lim \limits_{n\to \infty}frac{5x-3}{(\sqrt{x^2+4x-5})+\sqrt{x^2-x-2}}

    Kemudian pembilang dan penyebut dibagi x pangkat tertinggi yaitu x1:

    \lim \limits_{n\to \infty}\frac{\frac{5x}{x}-\frac{3}{x}}{(\sqrt{\frac{x^2+4x-5}{x^2}}+\sqrt{\frac{x^2-x-2}{x^2}})} = \lim \limits_{n\to \infty}\frac{5-\frac{3}{x}}{(\sqrt{1+\frac{4}{x}-\frac{5}{x^2}}+ \sqrt{1-\frac{1}{x}-\frac{2}{x^2}})}

    = \frac{(-0}{(1+1)} = \frac{5}{2}

    Limit Fungsi Trigonometri

    Limit juga dapat digunakan pada fungsi trigonometri. Penyelesaiannya sama dengan fungsi limit aljabar. Namun, agar mengerti penjalasan selanjutnya harus mengerti terlebih dahulu konsep dari trigonometri. Penyelesaian dalam limit fungsi ini dalam trigonometri bisa dilakukan dengan melakukan perubahan-perubahan bentuk sinus, cosinus, dan tangen.

    Ada tiga bentuk umum dalam limit fungsi trigonometri, yaitu bentuk :

    1. Bentuk \lim_{x\to c}f(x) = f(c)

    Pada bentuk ini, limit dari fungsi trigonometri f(x) merupakan hasil dari substitusi nilai c ke dalam x dari trigonometri. Contoh :

    Jika c = 0, maka rumus limit-limit trigonometrinya adalah sebagai berikut :

    2. Bentuk \lim_{x\to c}\frac{f(x)}{g(x)}

    Pada bentuk ini, limit diperoleh dari perbandingan 2 trigonometri berbeda. Kedua trigonometri tersebut jika langsung disubstitusi dengan nilai c menghasilkan f(c) = 0 dan g(c) = 0. Sehingga, nilai limit trigonometri tersebut menjadi bilangan tak tentu\frac{0}{0}. Penyelesaiannya sama dengan limit fungsi aljabar yaitu pemfaktoran. Contoh bentuk ini yaitu:

    \lim \limits_{x\to ^\pi/_2}\frac{\sin 2x}{cosx} = \frac{2 \cos x \sin x}{cosx} = 2 \sin x = 2 \sin \frac{\pi}{2} = 2

    3. Bentuk \lim_{x\to 0}\frac{f(x)}{g(x)}

    Pada bentuk ini, limit diperoleh dari perbandingan antara trigonometri dan fungsi aljabar. Jika disubstitusikan langsung akan menghaslikan bilangan tak tentu. Pada bentuk ini dikerjakan dengan konsep turunan. Bentuk rumus dasar limit ini adalah:

    Berdasarkan rumus dasar diataas, jika dikembangkan menjadi rumus-rumus berikut:

    Contoh Soal Limit Fungsi dan PembahasanContoh Soal Limit 1

    Tentukanlah nilai dari \lim_{x\to 2}(\frac{6-x}{x^2-4} - \frac{1}{x-2})     (UAN 2002)

    Pembahasan 1 :

    \lim \limits_{x\to 2}(\frac{6-x}{x^2} - \frac{1}{x-2}) = \lim \limits_{x\to 2}(\frac{6-x}{x^2-4} - \frac{x+2}{(x-2)(x+2)}) = \lim \limits_{x\to 2}\frac{(6-x) - (x+2)}{(x-2)(x+2)}

    =\lim \limits_{x\to 2}\frac{4-2x}{(x-2)(x+2)} = \lim \limits_{x\to 2}\frac{-2(x-2)}{(x-2)(x+2)} = \lim \limits_{x\to 2}\frac{-2}{(x+2)}

    =-\frac{2}{4} = -\frac{1}{2}

    Contoh Soal Limit 2

    Tentukanlah nilai dari \lim \limits_{x\to \infty}(\frac{\sqrt{4x+x^2} - \sqrt{2+x^2}}{3x})     (UN 2009)

    Pembahasan 2:

    \lim \limits_{x\to \infty}(\frac{\sqrt{4x+x^2}-\sqrt{2+x^2}}{3x}) = \lim_{x\to \infty}(\frac{\sqrt{\frac{4}{x^2}+\frac{x^2}{x^2}}-\sqrt{\frac{2}{x^2}+\frac{x^2}{x^2}}}{\frac{3x}{x}}) = \lim_{x\to \infty}(\frac{\sqrt{\frac{4}{x^2}+1}-\sqrt{\frac{2}{x^2}+1}}{3})

    =(\frac{1-1}{3}) = \frac{0}{3} = 0

    Contoh Soal Limit 3

    Tentukanlah nilai dari  \lim \limits_{x\to 0}(\frac{x^2+ \sin x \tan x}{1- \cos 2x})     (SPMB 2002)

    Pembahasan 3 :

    \lim \limits_{x\to 0}(\frac{x^2+ \sin x \tan x}{1- \cos 2x}) = \lim \limits_{x\to 0}(\frac{x^2+ \sin x \tan x}{2sin^2x}) = \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\sin x \tan x}{2sin^2x})

    = \lim \limits_{x\to 0}(\frac{x^2}{2sin^2x}+\frac{\sin x \tan x}{2 \sin^2x}) = \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\tan x}{2 \sin x})

    =(\frac{1}{2(1^2)}+\frac{1}{2(1)}) = \frac{1}{2}+\frac{1}{2} = 1

    Kontributor: Alwin Mulyanto, S.T.Alumni Teknik Sipil FT UI

    Materi StudioBelajar.com lainnya:

  • Integral Trigonometri
  • Rumus ABC
  • Determinan dan Invers Matriks
  • Limit Fungsi Aljabar Bagian 1 - Quipper Video Matematika Kelas 11 - Kurikulum 2013


    Source : https://www.studiobelajar.com/limit-fungsi/

    Tidak ada komentar:

    Posting Komentar