Kamis, 17 Januari 2019

➢ Mean Median Modus Cara Mencarirumus Data Tunggal Berkelompok

Mean, Median, Modus – Pengantar

Ukuran pemusatan data adalah sembarang ukuran yang menunjukkan pusat segugus data, yang telah diurutkan dari yang terkecil sampai yang terbesar atau sebaliknya. Salah satu kegunaan dari ukuran  pemusatan data adalah untuk membandingkan dua populasi atau contoh, karena sangat sulit untuk membandingkan masing-masing anggota dari masing-masing anggota populasi atau masing-masing anggota data contoh.

Nilai statistik ukuran pemusatan ini dibuat sedemikian sehingga cukup mewakili seluruh nilai pada data yang bersangkutan. Nilai statistik yang dapat menggambarkan keadaan suatu data antara lain mean (rataan hitung), modus, dan median. Data-data biasa dibagi menjadi 2 jenis yaitu data tunggal dan data berkelompok.

Mean (rataan)

Mean adalah nilai rata-rata dari beberapa buah data. Nilai mean dapat ditentukan dengan membagi jumlah data dengan banyaknya data. Mean (rataan) dapat dicari dari berbagai jenis data tunggal atau data kelompok dengan rumus berikut:

Median (Nilai Tengah)

Median adalah suatu nilai yang membagi data menjadi dua bagian yang sama banyaknya setelah data tersebut diurutkan dari yang terkecil sampai yang terbesar. Misalkan terdapat data  x_1,x_2,\cdots,x_n dengan  x_1 < x_2 < \cdots < x_n. Median dapat diketahui yaitu:

Sebagai ilustrasi terdapat data 2, 2, 4, 5, 5, 7, 7, maka median data tersebut terdapat pada:

M_e = x_{\frac{n+1}{2}} = x_{\frac{7+1}{2}} = x_4 = 5

Untuk data yang telah disusun dalam daftar  distribusi frekuensi, median dihitung dengan rumus berikut:

M_e = t_b + (\frac{\frac{1}{2}n-f_k}{f}) c

Dengan:

t_b = tepi bawah kelas mediann = banyak dataf_k = frekuensi kumulatif sebelum kelas medianf = frekuensi  kelas medianc = panjang kelas

Kelas median merupakan interval/kelas dengan  frekuensi kumulatif mencapai  \frac{1}{2} atau lebih  dari jumlah total.

Modus (M_o)

Modus merupakan nilai data yang paling sering muncul atau nilai data yang punya frekuensi terbesar. Sebagai contoh:

DATAMODUS2, 2, 2, 3, 4, 4, 5, 723, 4, 5, 5, 5, 6, 7, 7, 8, 8, 85 dan 82, 3, 5, 6, 9, 10Tidak ada

Nilai modus untuk data yang disajikan dalam distribusi frekuensi berkelompok tidak dapat tepat, tetapi hanya merupakan nilai pendekatan. Rumus untuk mencari modus dalam distribusi frekuensi berkelompok sebagai berikut:

M_o = t_b + (\frac{d_1}{d_1+d_2})c

Dengan :

t_b = tepi bawah kelas medusd_1 = selisih frekuensi kelas modus dengan kelas sebelumnyad_2 = selisih frekuensi kelas modus dengan kelas  sesudahnyac = panjang kelas

Contoh Soal Mean, Median, & Modus & Pembahasan1. Contoh Soal Mean

Diperoleh nilai ujian siswa dalam satu kelas sebagai berikut :

Interval Nilaifi40-49150-59460-69870-791480-811090-993JUMLAH40

Tentukan mean dari data tersebut berdasarkan rumus:

a. mean tabel distribusi frekuensib. mean sementara (simpangan)

Pembahasan

  • mean tabel distribusi frekuensi
  • \bar x = \frac{\sum^k_{i=1}f_ix_i}{\sum^k_{i=1}f_i} = \frac{2950}{40} = 73.35

  • mean sementara (simpangan)
  • \bar x = \bar x_s + \frac{\sum^k_{i=1}f_id_i}{\sum^k_{i=1}f_i} = 74.5 + (\frac{-30}{40}) = 73.35

    2. Contoh Soal Median

    Tentukan median dari data pada tabel soal 1.

    Pembahasan

    Berdasarkan tabel soal 1, diperoleh :

    Interval Nilaifixi40-491150-594560-6981370-79142780-81103790-99340

    Sehingga, nilai median adalah :

    M_e = t_b + (\frac{\frac{1}{2}n-f_k}{f})c = 69.5 + (\frac{20-13}{14}) 10 = 74.5

    3. Contoh Soal Modus

    Tentukan modus berdasarkan tabel soal 1

    Pembahasan

    Interval Nilaififk40-49144.550-59454.560-69864.570-791474.580-811084.590-99394.5

    Sehingga nilai modus adalah:

    M_o = t_b + (\frac{d_1}{d_1+d_2})c = 69.5 + (\frac{6}{6+4})10 = 10 = 75.5

    Artikel: Mean, Median, ModusKontributor: Alwin Mulyanto, S.T.Alumni Teknik Sipil FT UI

    Materi StudioBelajar.com lainnya:

  • Sudut Istimewa & Identitas Trigonometri
  • Determinan & Invers Matriks
  • Fungsi Komposisi & Fungsi Invers
  • Cara Mencari Mean, Modus, dan Median untuk Data Interval - Statistika Kelompok


    Source : https://www.studiobelajar.com/mean-median-modus/

    Tidak ada komentar:

    Posting Komentar